skip to main content


Search for: All records

Creators/Authors contains: "Thinakaran, Prashanth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Online recommender systems have proven to have ubiquitous applications in various domains. To provide accurate recommendations in real time it is imperative to constantly train and deploy models with the latest data samples. This retraining involves adjusting the model weights by incorporating newly-arrived streaming data into the model to bridge the accuracy gap. To provision resources for the retraining, typically the compute is hosted on VMs, however, due to the dynamic nature of the data arrival patterns, stateless functions would be an ideal alternative over VMs, as they can instantaneously scale on demand. However, it is non-trivial to statically configure the stateless functions because the model retraining exhibits varying resource needs during different phases of retraining. Therefore, it is crucial to dynamically configure the functions to meet the resource requirements, while bridging the accuracy gap. In this paper, we propose Sandpiper, an adaptive framework that leverages stateless functions to deliver accurate predictions at low cost for online recommender systems. The three main ideas in Sandpiper are (i) we design a data-drift monitor that automatically triggers model retraining at required time intervals to bridge the accuracy gap due to incoming data drifts; (ii) we develop an online configuration model that selects the appropriate function configurations while maintaining the model serving accuracy within the latency and cost budget; and (iii) we propose a dynamic synchronization policy for stateless functions to speed up the distributed model retraining leading to cloud cost minimization. A prototype implementation on AWS shows that Sandpiper maintains the average accuracy above 90%, while 3.8× less expensive than the traditional VM-based schemes. 
    more » « less
  2. null (Ed.)
  3. Traditionally, HPC workloads have been deployed in bare-metal clusters; but the advances in virtualization have led the pathway for these workloads to be deployed in virtualized clusters. However, HPC cluster administrators/providers still face challenges in terms of resource elasticity and virtual machine (VM) provisioning at large-scale, due to the lack of coordination between a traditional HPC scheduler and the VM hypervisor (resource management layer). This lack of interaction leads to low cluster utilization and job completion throughput. Furthermore, the VM provisioning delays directly impact the overall performance of jobs in the cluster. Hence, there is a need for effectively provisioning virtualized HPC clusters, which can best-utilize the physical hardware with minimal provisioning overheads.Towards this, we propose Multiverse, a VM provisioning framework, which can dynamically spawn VMs for incoming jobs in a virtualized HPC cluster, by integrating the HPC scheduler along with VM resource manager. We have implemented this framework on the Slurm scheduler along with the vSphere VM resource manager. In order to reduce the VM provisioning overheads, we use instant cloning which shares both the disk and memory with the parent VM, when compared to full VM cloning which has to boot-up a new VM from scratch. Measurements with real-world HPC workloads demonstrate that, instant cloning is 2.5× faster than full cloning in terms of VM provisioning time. Further, it improves resource utilization by up to 40%, and cluster throughput by up to 1.5×, when compared to full clone for bursty job arrival scenarios. 
    more » « less
  4. Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction (CBP) and Peak Prediction (PP) schemes together improves both average and 99 th percentile cluster-wide GPU utilization by up to 80% in case of HPC workloads. In addition, CBP+PP improves the average job completion times (JCT) of deep learning workloads by up to 36% when compared to state-of-the-art schedulers. This leads to 33% cluster-wide energy savings on an average for three different workloads compared to state-of-the-art GPU-agnostic schedulers. Further, the proposed PP scheduler guarantees the end-to-end QoS for latency-critical queries by reducing QoS violations by up to 53% when compared to state-of-the-art GPU schedulers. 
    more » « less